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Abstract—Based on an analytical model, degradation of the overall thermal conductivity is studied in this
paper to account for the internal mechanism of heat transfer between the solid medium and the fluid inside
cavities. The cavity is assumed to randomly distribute in the solid with its density measured by the volume
fraction. The model is capable of characterizing the effect of internal heat transfer such as conductive and
convective heat transfer across the surfaces of cavities. In the case involving the convection mode, the Biot
number has been identified to be the modulus dominating the overall thermal conductivity, while in the
case involving the conduction mode, the ratio of the thermal conductivity of the solid medium to that of
the fluid inside cavities is the major influencing factor. The effect of interfacial conduction and convection
is found to be pronounced when the volume fraction of pores in the solid exceeds 15%. The large deviation
from the experimental result by considering insulated cavities is redeemed by considering heat balance of
heat conduction or convection across the cavity surface.

INTRODUCTION

THE OVERALL thermal conductivity of a solid medium
containing internal structures such as pores is a com-
plicated subject which depends, in general, on the
combined modes of heat transfer between the solid
medium and the atmosphere present within the pores.
For the porous medium containing thousands of
pores with characteristic dimensions ranging from 10
to 100 um, the volume fraction of cavities is the appro-
priate variable to characterize the overall thermal con-
ductivity rather than the intensified thermal energy
cumulated in the neighborhood of individual pores.

A number of theoretical models have been
developed to estimate the overall thermal conductivity
of porous media. With reference to the thermal con-
ductivity k of the fully dense material, the commonly
used models for the estimate of overall thermal con-
ductivity & include:

ffk = 1—A4, f, Loeb [1] (1)
kik = (1=1)/(0 +)(4,—1), Maxwell [2]  (2)
kik = (1—f)/(1+A5f?), Koh and Fortini [3] (3)
kik = [f*+ R (1 =f*N)/
[F% —f+ Re (f+ 1—f*)], Russell [4] (4)
kfk = [142f (1= Re)/2Re + D]/
[1—f(1—Ry)/(2Rx + 1], Eucken [5] (5)
klk = 1—/, Francl and Kingery [6] (6)
kik = {2=301 ===} 2+,
Murabayashi e al. [T} (7)

with f being the volume fraction of pores and Ry the
ratio of thermal resistance of the fluid inside cavities
to that of the solid medium. Mathematically,
Ry = R;/R = k/k;. The coeflicients of A in equations
(1)—(3) were recently determined [8] for the P304L
stainless steel atomized metal powder. Under normal
conditions, it has been found that the mean deviation
of the experimental data for the Loeb and Russell
models is less than 10%, while in the case that the
cylindrical pore axis (the effect of pore orientation) is
perpendicular to the direction of heat flow, the Eucken
and Russell models do not yield satisfactory results.
Also, the Maxwell, Murabayashi et al., and Loeb
models were evaluated by El-Fekey et a/. [9] on thoria
compacts with porosities ranging from 19 to 46% in
the temperature range from 500 to 900°C. Com-
parison with experimental results is necessary for
theoretical models due to the complicated nature of
heat transfer through the porous media. Exper-
imentally, the comparative method for determining
the overall thermal conductivity was widely used by
researchers [10-12]. The way to minimize the errors
induced by the method has also been discussed exten-
sively [13-15].

The analytical model proposed in ref. [16], based
on the self-consistent approach [17-20], is worthy of
a mention. The model is developed on a continuum
basis which absorbs the effect of cavities on the overall
degradation of thermal conductivity in an added
thermal resistance tensor. The added tensor thus
formulated depends on the temperature distribution
along the surface of the cavity which can be calculated
analytically for cavities with a simple geometry or
numerically for cavities with complicated geometry.
Whether the cavity is insulated or subjected to energy
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NOMENCLATURE
a  characteristic dimension of the internal Greek symbols
cavity [m] f  transformation matrix between the prime
e unit normal vectors along the coordinate and the physical coordinate systems
axes 0 Kronecker delta function
! volume fraction of the internal 0 Euler angle [deg]
cavities ®  orientation angle in the spherical
g temperature function per unit heat flux coordinate system [deg]
m*K "W ¢ Euler angle [deg]

H  added tensor in the overall thermal
resistance tensor [mK—' W ']

&k thermal conductivity [Wm ' K™ ']

n unit normal vector of the crack surface

N total number of cracks per unit volume

r position vector of a material point around
the spherical cavity [m], radial distance
measured along the crack surface from the
center of the crack [m]

S boundary surface of the entire body
[m’]

T temperature [K]

AN spatial coordinates [m]

¥ coordinate perpendicular to a line
crack.

®  orientation angle in the spherical
coordinate system [deg].

Subscripts and superscripts

X; component of vector X in the x,-direction,
i=1,2,3

Xy ratio of the quantity X of the matrix to
that of the fluid inside cavities

X, indicial notation for the tensorial quantity
X

X, éXjéx,

X physical quantity X in the cavity

X volumetric average of X'

X’ prime coordinates aligned to the cavity

X ' inverse of X.

exchange with the fluid inside the cavity, therefore,
has an intrinsic influence on the outcome of the overall
thermal conductivity. Also, in the case that the intact
behavior of the solid medium is highly directional or
the incoming heat flux is multi-dimensional, the model
1s capable of predicting an anisotropic overall thermal
conductivity tensor in a natural fashion.

Application of the model to predict the overail
degradation of thermal conductivity in a solid medium
containing insulated cavities has already been made
[16]. In the range with volume fraction greater than
15%, however, the predicted values of overall thermal
conductivity start to deviate from the experimental
result. As the volume fraction of pores increases to
40%, the analytical result is approximately 30-40%
lower than that obtained experimentally. In improv-
ing the established model to predict the degradation
of overall thermal conductivity for media with higher
values of porosity, therefore, the present study aims
to redeem such a difference by incorporating the
modes of internal heat transfer across cavity surfaces.

THE ANALYTICAL MODEL

The detailed formulation for weakening of a Four-
ier solid carrying thermal energy due to the presence
of internal cavities is provided in the previous work
{16]. In summary, the model absorbs the effect of
internal cavities in an added tensor H;; as shown by

R,=R,+H/(R). forij=1.23 (8

where R, is the thermal resistance tensor of the fully
dense material and R, the overall thermal resistance
tensor of the porous medium which is the reciprocal
of the overall thermal conductivity tensor, R, = &;, .
Determination of the R, tensor according to equation
(8) obviously depends upon the added tensor H,,.
Through the concept of Green’s function and the
assistance of the divergence theorem, it has been
shown analytically that the A,; tensor is governed by

J Tn; dS€ = H},q, 9)
5¢

where S¢ is the surface area of the cavity, n] the unit
normal vector of the cavity surface in the x;/-direction.
T the temperature, and ¢; the incoming heat flux
components along the xj-direction. The prime coor-
dinate system is aligned according to the relative direc-
tion of the incoming heat flux to the special geometry
of cavities under consideration. For a solid containing
penny-shaped cracks as illustrated in Fig. 1(a), for
example, the temperature distribution 7 in equation
(9) is determined from the prime coordinate system
such that the incoming heat flux component g5 is
perpendicular to the crack surface. For the present
problem illustrated in Fig. 1(b), the incoming heat
flux component g, is taken to be perpendicular to the
spherical cavity, which is actually arbitrary due to
perfect symmetry of the spherical surface. Based on
the tensor transformation for the base vectors e; from
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(b) A spherical cavity

FiG. 1. The prime and global coordinate systems assigned
for (a) a penny-shaped crack and (b) a spherical cavity.

the prime coordinate system back to those of the
global coordinate system e;

e, = fe (10)
with
—sinf  —sin¢cosf cos ¢ cos b
pi=| cos0 —sin¢gsind cos¢sind (1D
0 cos ¢ sin ¢

and 6 and ¢ the Euler angles, then, the added tensor
H; in the global coordinate system is obtained by
averaging the H;; tensor over all the possible orien-
tations of the cavity relative to the incoming heat flux,

i.e.

N

2n 2
H,~ =5 J\ ﬂimﬂmH:rm(Ri/') Cos ¢ d¢ do’
2n)o o

fori,j,mn=1,23. (12)

Clearly, the most important component in this
approach is the determination of the temperature field
around the cavity. Once the temperature field is deter-
mined in terms of the heat flux g/ incoming from the
x;-direction

T(x) = g,(x)q; (13)
the components of H;, can be determined from equa-

tion (9)

H = J gin; ds© 14
s¢

where g? are the boundary values of the functions g;
at the cavity surface. With the coefficients §;; defined
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in equation (11) and the H}; tensor determined from
equation (14), the components of H, can thus be
calculated from equation (12). In passing to the exam-
ples illustrating this standard procedure, it should be
noticed that the added tensor H,, calculated in this
manner may not always be a diagonal matrix. The
resulting overall thermal resistance tensor, and hence
its reciprocal being the overall conductivity tensor,
calculated according to equation (8) may present non-
zero values in the off-diagonal terms and the overall
conductivity tensor may consequently become aniso-
tropic. In the present model, whether the overall con-
ductivity tensor is anisotropic or not depends on the
intact behavior of the thermal conductivity, the geo-
metrical configuration of cavities, and the thermal
loading imposed on the system.

SPHERICAL CAVITIES

The value of the analytical model proposed in the
present work lies in its universality in estimating the
overall thermal conductivity. The effect of internal
heat transfer across the surface of cavities is reflected
by the boundary values of the g-functions, g7, in
equation (14). It is indeed the boundary temperature
at the surface of cavities defined in equation (13).
In addition to the g,-functions, the overall thermal
resistance depends also on the shape of the cavity
which is reflected by the unit normal vectors »; and
the differential surface area dS© of the specific cavity
surface under consideration. In the sequel we shall
illustrate the use of equations (8)—(14) by calculating
the overall thermal conductivity of a solid containing
spherical cavities subjected to various modes of heat
transfer across the surface.

The incoming heat flux §5 in a three-dimensional
solid is assumed to be disturbed by spherical cavities
with an average radius a as shown in Fig. 2. The
unit normals at the surface of the spherical cavity are
expressed by

'
)
i
'
'
|
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'
i
]
T
i

P
\\
N

Ty
Case (a): T,y =0

Case (b): kT, =hT
Case (c): kT, = keTeor

F16. 2. A spherical cavity subjected to a uni-directional heat
flux in the x}-direction.



1842

n.=xifa, withi=1,2.73 (15)

{

where prime coordinates x; are related to the spherical
coordinates (r, @, ®) by

VRPN
STV

= {rsin @ cos O.rsin O sin B, rcos @} (16)

and the differential surface dS¢ is ¢° sin ® d® do.
Also. we assume the heat flux #; is in the same sense
as the unit normal e but in the opposite direction.
The intact thermal resistance tensor of the medium is
assumed to be isotropic

R;=R),. forij=1273 (17)

with J,; being the Kronecker delta function and R the
isotropic thermal resistance of the solid, the reciprocal
of the isotropic thermal conductivity 1/k.

For a spherical cavity with ®-symmetry, the har-
monic function resulting from the steady-state encrgy
cquation is

T = (Ar+B/r’)cos @ (18)

with 4 and B being coefficients depending on the
boundary conditions at the cavity surface. At a dis-
tance far away from the cavity, the heat flux resulting
from equation (18) must be identical to the incoming
heat flux ¢5. which gives

gy = k(cT/Cx3) (19)

ds r— .

By noticing that x; = r cos ® according to the coor-
dinate system defined in Fig. 2, cquations (18) and
(19) yield

A =gk =§,\R. (20)

The coefficient B depends on the boundary condition
at the surface of the cavity which reflects a specific
mode of heat transfer across the interface. In this
work, we shall consider threc examples: (a) spherical
cavitics with insulated boundaries. (b) spherical cavi-
ties with convective heat transfer across the surface,
and (c) spherical cavities with conductive heat transfer
across the surface. Case (b) is to illustrate the effect
of heat transfer cocflicient on the overall thermal con-
ductivity while Case (¢) is to study the effect of relative
thermal conductivity.

() Insulated  spherical  cavities. The insulated
boundary condition at the surface of the cavity in this
case is expressed by

T,=0 (2D

Substituting equation (20) into equation (18) and the
result into equation (21), the coefficient B is deter-
mined as

at r = «.

B =g Ra’j2 (22)
and the temperature distribution is determined as
T(r,®) = (§5R)(r+a’/2r%) cos @. (23)

Equation (23) is exactly the same as that used by
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Florence and Goodier [21]. Referring to equation
(13), the g,-functions arc thus

gy =g-=0. g(r.0,®) = R(r+a*i2r%) cos O.

and g% = ¢.(¢. 0. D) = (3aR/2) cos B.  (24)

Substituting cquations (15), (16). and (24) into equa-
tion (14) and intcgrating the cavity surface for
O¢€[0,7] and ®e[0.2n], the components of #H}, can
be integrated immediately to give

H = 2ra’ R and H, othcrwise. (25)

The tensor H;; thus obtained is then transformed back
to the physical coordinates x, according to equation
(12). The result is

on
H,= _Rfo,. forij=1273 (26)
R

if
wherc the total number of cavities in a material vol-
ume with the characteristic dimension «. Na*. cor-
responds to the volume fraction f of cavities [[6, 20]
in the solid. The overall thermal resistance R. finally,
is determined by substituting equation (26) into equa-
tion (8), which gives

RIR=Fkk=1-Qr/3)f 27)

with R being the principal components of R; = RJ,,
as a result of equation (17). This is the desired equa-
tion for the overall thermal conductivity of a solid
mecdium containing insulated spherical cavities. It
turns out o be an isotropic tensor under the present
condition with randomly oriented spherical cavities
and a uni-directional incoming heat flux. The isotropy
of the overall thermal conductivity tensor results from
zero values of the ¢, and ¢, functions in cquation
(24), which consequently reduces an H;; tensor with
H',; being the only non-zero component as shown by
equation (25). For cavitics with an anisometric shape
such as a penny-shaped crack subjected to multi-direc-
tional heat flux impingement as illustrated in Fig. 1(a).
this may not be the case and an anisotropic overall
thermal conductivity tensor would result.

(b) Spherical cavities with interfacial convection.
The second case under consideration involves heat
balance between the solid medium and the fluid phasc
trapped in the cavity across the cavity surface. Math-
ematically, this condition can be expressed by

KT, = hT (28)

atr =y«

where /1 1s the averaged heat transfer coefficient and
the temperature of the fluid inside the cavity is
assumed to be zero without loss in generality. With
the result of the coefficient 4 shown in equation (20),
combination of equation (18) with equation (28)
yiclds

B = G Ra*(1 —haR)/(2+huR) (29)

and the temperature distribution

T(r.®) = (§5R)[r+a’ (1 —haR)/(2+haR)r*] cos O
(30)



The effect of internal heat transfer in cavities on the overall thermal conductivity

is obtained. The rest of the procedure is exactly the
same as that in the previous case and the cor-
responding equations are summarized as follows :

The g-functions
Gi=g>=0, g:(+.0,0) = R(r+a>/2r*) cos O,
and ¢% = ¢g+(a, ©, ®) = [3aR/(2+haR)] cos O.
(31)
The H; tensor in the prime coordinate system X;
H'y = 4na’ Rj(2+hRa) and H otherwise. (32)
The H,, tensor in the global coordinate system x;

Substituting equation (33) into equation (8) then
yields the following equation for the determination of
the overall thermal resistance R:

GBha)R*+(6—3haR—4nf)R—6R =0. (34)

Again, the overall thermal resistance tensor is iso-
tropic in this case. In contrast to equation (27) in Case
(a), equation (34) is a quadratic equation to be solved
for R. By introducing the Biot number defined as
Bi = ha/k = haR, its solution can be arranged in the
form of

kK R 6Bi
k™ R (3Bi+4nf—6)+/((Bi+4nf—6)" +72Bi)

(35)

where the negative root is dropped because the ther-
mal conductivity is positive definite. In the present
case with convection heat transfer across the surface
of cavities, equation (35) shows that the overall degra-
dation of the thermal conductivity is characterized by
the Biot number. With the numerical values provided
in Table 1, Fig. 3 graphically displays the variation of
the ratio of £/k vs the volume fraction f. When the
Biot number is small, say 2 x 1073, the fluid inside the
cavity only carries a small amount of energy and the
cavity behaves like being insulated. The result of k/k
represented by equation (35) in this case reduces to

Table . Numerical values of &/k varying as a function of
the volume fraction f. Case (b) with heat convection across
the cavity surface

Overall thermal conductivity

Volume fraction kik
ya Bi=2x10"°%t Bi=02 Bi=2
0 i ! !
0.1 0.79 0.81 0.90
0.2 (.58 0.64 0.81
0.3 0.37 0.48 0.73
0.4 0.16 0.39 0.67

t The case corresponding to k/k = | —(2n/3) f for insu-

lated cavities.
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Solid

KT, =hT

. » - Experiment

i H H i

0 0.1 0.2 0.3 0.4
f

FiG. 3. The effect of Biot number on the degradation of
overall thermal conductivity, equation (35). Experimental
results are from Agapiou and DeVries [8].

equation (27) for insulated cavities, as represented by
the straight line k/k = 1 —(2n/3) f. When Biot number
increases, as expected. the relative strength of heat
convection increases and the overall thermal con-
ductivity increases consequently. The relationship
between k/k and f becomes more nonlinear especially
in the range with larger values of f. By comparing this
example with the previous case with insulated cavities,
we thus conclude that the heat convection across the
cavity surface is a non-linear effect to the overall ther-
mal conductivity. The experimental results recently
obtained by Agapiou and DeVries [8] are also dis-
played for comparison. The reported values of k/k
in their work are up to 40% of the porosity. The
model employing insulated cavities is sufficient within
the range of f being approximately 15%. For the
solid with larger valucs of volume fraction than this
threshold, the convection mode of heat transfer across
the cavity surface becomes important as reflected by
the curve with B/ = 0.2 in the figure which agrees well
with the experimental results in the full range of the
volume fraction f. The Biot number, as shown by
equation (35), appears as a parameter which has been
given arbitrary values in comparison with the exper-
imental results of £/k vs /. On a numerical basis. the
purposc is to determine the threshold value of B/ such
that the predictability of the model could be extended
to the range with higher values of porosity. In direct
experimental measurements, however, the effects of
other modes of internal heat transfer such as heat
conduction and radiation across the cavity surfaces
may also be included as an entirety. For direct com-
parisons, thercfore, the parameters involved in this
model such as the values of &, k, and « (and hence the
value of the Biot number) must be determined first
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and then substituted into equation (35) for deter-
mining the overall thermal conductivity. This is also
the situation in the next section where the effect of
thermal conductivity of fluids trapped in cavities is
studied.

(¢) Spherical cavities subject to conductive heat
exchange. The third case under consideration involves
conductive energy balance across the cavity surface,
The stationary fluid inside cavities is simulated as a
thermal field which exchanges the energy with the
solid medium by heat conduction. The energy equa-
tions for the solid medium and the fluid phase inside
cavities arc both Laplacian and the harmonic func-
tions for temperature distributions are

T = (§2Rr+ B/r) cos O, for the

solid medium with r >« (36)
T, = Crcos O, for the fluid phase
inside the cavity withr < a  (37)

where the boundary condition at infinity, equation
(19), has been used in equation (36) and the term
containing 1/r? in equation (37) has been dropped
because the fluid temperature must keep bounded at
r = 0. The coeflicients B and C in equations (36) and
(37) are determined from the continuity of tem-
perature and heat flux across the surface of the cavity

T=T and(1/R)T,=(1/R)T,, atr=ua.

(38)

From equations (36) and (37), then, equation (38)

renders
B = g R[a*(R,— R)/(R+2R;)] and
C= §5RBR/(R+2Ry)] (39)

and the temperature field in the solid medium and
fluid phase are completely determined. The corres-
ponding equations for calculating the overall ther-
mal conductivity in this case are:

The g,-functions
gi=g%=0 andgh =[3aRR/(R+2R)] cos O.
(40)
The H; tensor in the prime coordinate system Xx;

H'. = 47a°RR/(R+2R,) and H|, = 0 otherwise.

41
The H,; tensor in the global coordinate system x;,
4nfRR; .
= = O 42
YO3(RA2RY Y “42)

Substituting equation (42) into equation (8) then
yields a quadratic equation for determining the overall
thermal resistance R

3R>+ (6R,—3R—4nfRH)R—6RR, =0 (43)

D. Y. Tzou

Solid

1.0
KT, = KTy

0.8

/
0.4 kfkg = 250 —/

_2m

(1-2m)
0.2
- @ - Experiment
L 1 | |
0 0.1 0.2 0.3 0.4

f

F1G. 4. The effect of relative thermal conductivity k/k; on the
overall thermal conductivity, equation (44). Experimental
results are from Agapiou and DeVries [8].

which can be solved for the ratio of the overall thermal
conductivity to its intact value

6
(B4R fRy—6Re)+ (3 +41fRe—6R)*+72Ry)
with Ry, = R/R = kik,. (44)

Note the similarity between equations (35) and (44).
The relationship between k/k and f is again nonlinear
under the conductive mode of heat transfer across the
cavity surface, as shown by Fig. 4. When the valuc of
k. is small relative to the intact value of the solid, say
kjke ~ 250, the cavity behaves like it is insulated and
the result represented by equation (54) reduces to that
of equation (27) for insulated cavities. As the value
of Ry(k/ke) decreases, equivalently the value of k,
increases and the overall thermal conductivity of the
solid increases. Note also that the curve with
kik, = Ry = 4, as provided in Table 2, gives the values

Table 2. Numerical values of k/k varying as a function of
the volume fraction f. Case (c) with heat conduction with
the fluid inside cavities

Overall thermal conductivity

Volume fraction kik
I Re=2  Rey=4t Rg=250%
0 I 1 1
0.1 0.84 0.82 0.79
0.2 0.69 0.65 0.58
0.3 0.56 0.50 0.38
0.4 0.46 0.37

+The case close to Case (b) with Bi = 0.2.
1 The case corresponding to ktk = 1—(2n/3)/ for insu-
lated cavities.
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of k/k very close to those in the previous Case (b)
with Bi = 0.2. The models simulating heat conduction
and convection across the cavity surface are thus inter-
related.

CONCLUSION

The effect of interfacial convection and conduction
across the cavity surface on the overall thermal con-
ductivity of porous media has been investigated in this
work. The Biot number has been found to be the
physical modulus characterizing the effect of heat con-
vection, while the ratio of thermal conductivity of the
solid medium to that of the fluid phase inside cavities,
klk;, has been found to characterize the effect of heat
conduction. In both cases, the analytical results
obtained in this work agree well with the experimental
data for Bi = 0.2 in the convection model and k/k, = 4
in the conduction model. In comparison with the
results employing insulated cavities [16], con-
sideration of internal heat transfer across cavity sur-
faces significantly extends the applicable range of the
model to solid media with porosity being at least 40%.

The analytical model proposed in this work is gen-
eral enough to study cavities of any shape. With tem-
perature around a single cavity being the central quan-
tity in this model, however, numerical methods such
as the finite difference or the finite element method may
be needed for cavities with an irregular geometry. In
this case, the surface integral of temperature, and
hence the components of the H;; tensor in equation
(9). must be evaluated numerically due to the absence
of an analytical form for the temperature distribution
T along the cavity surface. At this stage of the devel-
opment, there exists two major restrictions in the
model being proposed. First, the volume fraction or
porosity of cavities in the solid cannot be too high
because interactions with adjacent cavities are not
incorporated in determining the temperature dis-
tributions represented by equations (23), (30), and
(36). Should the coupling effects among cavities be
included, the problem would involve two cavities sep-
arated by a distance / in the mathematical formulation
and the value of / will be the additional geometrical
parameter involved in the temperature distribution
along the cavity surface. In averaging the Euler angles
¢ and 0 to obtain the H,; tensor according to equation
(12), then, the one averaging the distance / over the
corresponding physical domain from /, (the smallest
value of [ between any adjacent cavities) to /, (the
largest value of / between any adjacent cavities) should
also be included and the overall thermal conductivity
in this case will depend on the values of /, and /.
Because the problem formulated in this manner
involves a multiply-connected region, numerical
methods seem to be unavoidable in determining the
temperature distribution. Secondly, because deter-
mination of the components of the A, tensor is made
by comparing the coefficients of g} in equation (9),
application of the present model is limited to linear
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problems for which the temperature T can be rep-
resented by a /inear function of the incoming heat flux.
For non-linear problems such as the one involving a
temperature-dependent thermal conductivity, the
temperature distribution T around the cavity depends
also on the higher order terms of §; and at this stage
of the development, the model is not mature yet for
such extensions.

Whether the overall thermal resistance tensor is
kept isotropic or not fully depends on the outcome of
the added tensor H,. In the present case with ran-
domly oriented spherical cavities subjected to a uni-
directional heat flux, the H,, tensor, and hence the K,
tensor, turns out to be isotropic. In the case that H;
becomes an anisotropic tensor, such as that resulting
from the presence of a multi-directional incoming heat
flux impinging on cavities with an anisometric shape,
a total of nine components may appear altogether
in the overall thermal resistance tensor R,/. Besides,
equations (27), (35), and (44) are obtained based upon
an isotropic medium. Should an originally anisotropic
material be considered, the temperature distribution
may involve all the components R;; of the thermal
resistance tensor, and equation (8) may lead to a total
of nine algebraic equations to be solved for all the
components of R;;.

The overall thermal conductivity is a combined
result of thermal loading, geometrical configuration
of cavities, and intact behavior of the solid medium.
It reflects the thermal response of a porous medium
to a specific way with which the medium is excited.
The complicated interaction among the three factors
of loading, geometry, and material may render an
anisotropic tensor for the overall thermal conduc-
tivity. The distribution of penny-shaped mesocracks
in a preferential direction in a solid medium [16], for
example, may render a smaller value of the thermal
conductivity in the direction perpendicular to the
crack surface in comparison with that in parallel due
to the discontinuity across the crack surface. Along
with the extensions of the model into the non-linear
problems with or without coupling effects, this will be
the major direction for the future development of the
model.
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EFFET SUR LA CONDUCTIVITE THERMIQUE APPARENTE DU TRANSFERT DE
CHALEUR INTERNE DANS DES CAVITES

Résumeé—A I'aide d'un modéle analytique, on étudie la dégradation de la conductivité thermique apparente
en tenant compte du mécanisme interne du transfert thermique entre le milieu solide et le fluide dans les
cavités. Celles-ci sont supposées étre distribuées au hasard dans le solide avec une densité mesurée par la
fraction volumique. Le modéle est capable de caractériser V'effet du transfert de chaleur interne par
conduction et convection a travers les surfaces des cavités. Pour le mode convectif, le nombre de Biot est
identifi¢ comme étant le module déterminant la conductivité tandis que dans le mode conductif le facteur
principal est le rapport de la conductivité thermique du solide a celle du fluide dans les cavités. L'effet de
la conduction interfaciale et de la convection est prononcé lorsque la fraction volumique des pores dans le
solide dépasse 15%. Le grand écart aux résultats expérimentaux quand on considére les cavités comme
isolées est rattrapé en considérant les bilans de conduction et convection a travers les surfaces des cavités.

DER EINFLUSS DES INNEREN WARMEUBERGANGS IN HOHLRAUMEN AUF DIE
GESAMTWARMELEITFAHIGKEIT EINES POROSEN MEDIUMS

Zusammenfassung-—Aul der Grundlage eines analytischen Modells wird in der vorliegenden Arbeit dic
Abnahme der Gesamtwirmeleitfihigkeit aufgrund des inneren Wirmeiibergangs zwischen dem festen
Medium und dem Fluid in einem Hohlraum untersucht. Es wird angenommen, dafl der Hohlraum auf
zufitllige Weise im Feststoff verteilt ist. Scine Dichte wird durch den Volumenanteil charakterisiert. Das
Modell ist in der Lage, den Einflul des inneren Wiirmeiibergangs infolge Leitung und Konvektion an der
Hohlraumoberfliche zu beschreiben. In Fiillen. bei denen die Konvektion cine Rolle spielt, ist die Biot-
Zahl die fir dic Gesamtwirmeleitung charakteristische KenngroBe, wihrend im Fall Gberwicgender
Wiirmeleitung das Verhiltnis der Wirmeleitfahigkeiten von Feststofl und Fluid im Hohlraum die wesent-
liche EinfluBgrdBe ist. Der Einflull von Wiirmeleitung und Konvektion iber die Grenztliche crweist sich als
bedeutsam. sobald der Volumenanteil der Poren im Feststoff 15% lberschreitet. Dic groB3e Abweichung
gegenitber Versuchswerten wird behoben. wenn statt isolierter Hohlriiume cine Wirmebilanz aufgrund
von Leitung und Kovektion iiber die Holitraumoberlliche betrachtet wird.

BJAWAHUE BHYTPEHHEI'O TEIIJIOITEPEHOCA B MOJIOCTAX HA KOOOOPUUMUEHT
CYMMAPHON TEIJIOITIPOBOJHOCTH

Annoramms—Ha OCHOBE aHAJIMTHYECKOH MOJENH HCCIEAYeTCA CHUXEHHE Ko3pduuueHTa cyMmapHoi
TEMJIONPOBOJHOCTH 34 CYET BHYTPEHHHX MEXAHM3MOB TEILUIONEPEHOCA MEXIY TBEPAOH Cpenoi ¥ Xui-
KOCTBIO B mosiocTsx. [Ipeanosaraercs, 4T0 NOJIOCTH XAOTHYECKH PACIpede/ieHbl B TBEPAOM Telle, 4 UX
IIIOTHOCTh ONpeneisAeTcd oObeMHOM noseid. Monens MOXET XapakTepu3oBaTh BMSHME BHYTPCHHEro
TENJIONEPEHOCA, B YACTHOCTH, TAKOTO KaK KOHBEKTHBHBIA H KOHAYKTHBHEIH TEMJIONEPEHOC Yepe3 NOBEPX-
HOCTH ToJIoCTel. B cnyyae KOHBEKTHBHOTO peXXHMa 4MCI0 BHO ABIsAeTCS BEJIMMMHOM, onpenensioumei
k03¢ dUIMEHT CyMMapHO# TEILIONPOBOAHOCTH, B TO BPEMS KaK NPH KOHAYKTUBHOM PEXHME OCHOBHBIM
onpenesiouuM GakTopoM ABJIKETCS OTHOLUCHHE KOY(PHLMEHTOB TEMIONPOBOAHOCTH TBEPAOH CPeibl
H KHUAKOCTH BHYTPH moJiocteit. Halineno, 410 3pdexT TennonpoBoaHoCTH M KOHBEXUMH Ha Mexda3Hoi
rpaHune ocobeHHO 3aMeTeH, Koraa oOheMHas foJis mop B TBepAo# cpene npesbillaeT 15%. CymecTBeH-
HOE OTKJIOHEHHE OT IKCIIEPHMEHTAJILHBIX PE3YJIbTATOB, MOJY4eHHOE MPH HCCIICIOBAHHH H30JIMPOBAHHBIX
HOJIOCTEH, YCTPaHAETCA MOCPEACTBOM y4€Ta TEMIOBOrO HanaHca KOHBEKIMH HMJIH TEMJIONPOBOAHOCTH
4epe3 MOBEPXHOCTb MOJIOCTH.



