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Abstract-Based on an analytical model, degradation of the overall thermal conductivity is studied in this 
paper to account for the internal mechanism of heat transfer between the solid medium and the fluid inside 
cavities. The cavity is assumed to randomly distribute in the solid with its density measured by the volume 
fraction. The model is capable of characterizing the effect of internal heat transfer such as conductive and 
convective heat transfer across the surfaces of cavities, In the case involving the convection mode, the Biot 
number has been identified to be the modulus dominating the overall thermal conductivity. while in the 
case involving the conduction mode, the ratio of the thermal conductivity of the solid medium to that of 
the fluid inside cavities is the major influencing factor. The effect of interfacial conduction and convection 
is found to be pronounced when the volume fraction of pores in the solid exceeds 15%. The large deviation 
from the experimental result by considering insulated cavities is redeemed by considering heat balance of 

heat conduction or convection across the cavity surface. 

INTRODUCTION 

THE OVERALL thermal conductivity of a solid medium 

containing internal structures such as pores is a com- 
plicated subject which depends, in general, on the 
combined modes of heat transfer between the solid 
medium and the atmosphere present within the pores. 
For the porous medium containing thousands of 
pores with characteristic dimensions ranging from 10 
to 100 pm, the oo/ume,f~action of cavities is the appro- 
priate variable to characterize the overall thermal con- 
ductivity rather than the intensified thermal energy 
cumulated in the neighborhood of individual pores. 

A number of theoretical models have been 
developed to estimate the overall thermal conductivity 
of porous media. With reference to the thermal con- 
ductivity k of the fully dense material, the commonly 
used models for the estimate of overall thermal con- 
ductivity F include : 

E/k = 1 -A ,,f; Loeb [l] (1) 

k/k = (1 -,f’)/( I +,f’)(A l - I), Maxwell [2] (2) 

E/k = (1 -f)/( 1 +A J’), Koh and Fortini [3] (3) 

k/k = [.f’“+RK(l -f“ ‘)I/ 

[,f“’ ’ -,f’+ R, (,f‘+ I -,f” ‘)I, Russell [4] (4) 

e/k = [ I+ 2.f’( I - RK)/(2R,t + I)]/ 

11 -.f’(l - Rd/(2RR + 111, h&en 151 (5) 

I;ik = 1 -,f, Franc1 and Kingery [6] (6) 

k/k = {2-3[1 -(I -,f’)“](l -,f’)}/(2+,f’), 

Murabayashi et al. [7] (7) 

with ,f being the volume fraction of pores and R, the 
ratio of thermal resistance of the fluid inside cavities 

to that of the solid medium. Mathematically, 
R, = RJR = k/k,. The coefficients of A in equations 
(l)-(3) were recently determined [8] for the P304L 

stainless steel atomized metal powder. Under normal 
conditions, it has been found that the mean deviation 

of the experimental data for the Loeb and Russell 
models is less than lo%, while in the case that the 
cylindrical pore axis (the effect of pore orientation) is 
perpendicular to the direction of heat flow. the Eucken 

and Russell models do not yield satisfactory results. 
Also, the Maxwell, Murabayashi et cd., and Loeb 

models were evaluated by El-Fekey et al. [9] on thoria 
compacts with porosities ranging from I9 to 46% in 

the temperature range from 500 to 9OO‘C. Com- 

parison with experimental results is necessary for 
theoretical models due to the complicated nature of 

heat transfer through the porous media. Exper- 

imentally, the comparative method for determining 
the overall thermal conductivity was widely used by 

researchers [l&12]. The way to minimize the errors 

induced by the method has also been discussed exten- 
sively [l3-151. 

The analytical model proposed in ref. [16], based 
on the self-consistent approach [17-201, is worthy of 
a mention. The model is developed on a continuum 
basis which absorbs the effect of cavities on the overall 
degradation of thermal conductivity in an added 
thermal resistance tensor. The added tensor thus 
formulated depends on the temperature distribution 
along the surface of the cavity which can be calculated 
analytically for cavities with a simple geometry or 
numerically for cavities with complicated geometry. 
Whether the cavity is insulated or subjected to energy 
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NOMENCLATURE 

N characteristic dimension of the internal Greek symbols 
cavity [m] P transformation matrix between the prime 

C’ unit normal vectors along the coordinate and the physical coordinate systems 
axes 6 Kronecker delta function 

f’ volume fraction of the internal (I Euler angle [deg] 
cavities 0 orientation angle in the spherical 

B temperature function per unit heat flux coordinate system [deg] 
[m’ K ’ W- ‘1 Q, Euler angle [deg] 

H added tensor in the overall thermal 0 orientation angle in the spherical 
resistance tensor [m Km ’ W ‘1 coordinate system [deg]. 

Ii thermal conductivity [W m ’ K-~ ‘1 
n unit normal vector of the crack surface Subscripts and superscripts 
N total number of cracks per unit volume X, component of vector X in the .r,-direction, 
I position vector of a material point around i= 1,2,3 

the spherical cavity [ml, radial distance XR ratio of the quantity X of the matrix to 
measured along the crack surface from the that of the fluid inside cavities 
center of the crack [m] XV indicial notation for the tensorial quantity 

S boundary surface of the entire body X 

T [m’l x, t?Xli.Y, 
temperature [K] X” physical quantity X in the cavity 

.\’ spatial coordinates [m] R volumetric average of X 

!’ coordinate perpendicular to a line X’ prime coordinates aligned to the cavity 
crack. X ’ inverse of X. 

exchange with the fluid inside the cavity, therefore, 
has an intrinsic influence on the outcome of the overall 
thermal conductivity. Also, in the case that the intact 
behavior of the solid medium is highly directional or 
the incoming heat flux is multi-dimensional, the model 

is capable of predicting an anisotropic overall thermal 
conductivity tensor in a natural fashion. 

Application of the model to predict the overall 

degradation of thermal conductivity in a solid medium 
containing insulated cavities has already been made 
[16]. In the range with volume fraction greater than 

15%, however, the predicted values of overall thermal 
conductivity start to deviate from the experimental 

result. As the volume fraction of ports increases to 
40%. the analytical result is approximately 3040% 

lower than that obtained experimentally. In improv- 
ing the established model to predict the degradation 

of overall thermal conductivity for media with higher 
values of porosity, therefore, the present study aims 

to redeem such a difference by incorporating the 
modes of internal heat transfer across cavity surfaces. 

THE ANALYTICAL MODEL 

The detailed formulation for weakening of a Four- 

ier solid carrying thermal energy due to the presence 
of internal cavities is provided in the previous work 
[16]. In summary, the model absorbs the effect of 
internal cavities in an added tensor H,, as shown by 

/?,, = R,,+H,,(a,,). fori.,j= 1.2,3 (8) 

where R,, is the thermal resistance tensor of the fully 
dense material and I?,, the overall thermal resistance 
tensor of the porous medium which is the reciprocal 

of the overall thermal conductivity tensor, I?,, = k;, ’ 
Determination of the f?,, tensor according to equation 

(8) obviously depends upon the added tensor H,,. 
Through the concept of Green’s function and the 
assistance of the divergence theorem, it has been 

shown analytically that the H,, tensor is governed by 

s Tn; dSc = H;,q; (9) 
s’ 

where SC is the surface area of the cavity, n; the unit 

normal vector of the cavity surface in the x:-direction. 
T the temperature, and y,’ the incoming heat flux 
components along the $-direction. The prime coor- 
dinate system is aligned according to the relative direc- 
tion of the incoming heat flux to the special geometry 
of cavities under consideration. For a solid containing 
penny-shaped cracks as illustrated in Fig. l(a). for 
example, the temperature distribution T in equation 
(9) is determined from the prime coordinate system 
such that the incoming heat flux component 4; is 
perpendicular to the crack surface. For the present 
problem illustrated in Fig. I(b), the incoming heat 
flux component L$ is taken to be perpendicular to the 
spherical cavity, which is actually arbitrary due to 
perfect symmetry of the spherical surface. Based on 
the tensor transformation for the base vectors e: from 
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(a) A penny-shaped crack 

(b) A spherical cavity 

FIG. 1. The prime and global coordinate systems assigned 
for (a) a penny-shaped crack and (b) a spherical cavity. 

the prime coordinate system back to those of the 

global coordinate system e, 

e, = !A,$ (10) 

with 

-sin 8 -sin4cosO cos~cos0 

P,i = 

[ 

cos a -sinf$sinO cos4sinO 

1 

(11) 

0 cos 4 sin f$ 

and 0 and 4 the Euler angles, then, the added tensor 
H,, in the global coordinate system is obtained by 
averaging the H:, tensor over all the possible orien- 
tations of the cavity relative to the incoming heat flux, 

i.e. 

for i,j,m,n = 1,2,3. (12) 

Clearly, the most important component in this 
approach is the determination of the temperature field 
around the cavity. Once the temperature field is deter- 
mined in terms of the heat flux 4; incoming from the 
x;-direction 

7X.x:) = g,(&)& (13) 

the components of H:, can be determined from equa- 
tion (9) 

H:, = s SC 
g;n: dSC (14) 

where g,B are the boundary values of the functions g, 
at the cavity surface. With the coefficients p,i defined 

in equation (11) and the H:, tensor determined from 

equation (14), the components of H,, can thus be 

calculated from equation (12). In passing to the exam- 

ples illustrating this standard procedure, it should be 
noticed that the added tensor H,, calculated in this 
manner may not always be a diagonal matrix. The 
resulting overall thermal resistance tensor, and hence 
its reciprocal being the overall conductivity tensor, 
calculated according to equation (8) may present non- 

zero values in the off-diagonal terms and the overall 
conductivity tensor may consequently become aniso- 
tropic. In the present model, whether the overall con- 

ductivity tensor is anisotropic or not depends on the 
intact behavior of the thermal conductivity, the geo- 

metrical configuration of cavities, and the thermal 
loading imposed on the system. 

SPHERICAL CAVITIES 

The value of the analytical model proposed in the 

present work lies in its universality in estimating the 
overall thermal conductivity. The effect of internal 

heat transfer across the surface of cavities is reflected 
by the boundary values of the g,-functions, g,“, in 
equation (14). It is indeed the boundary temperature 

at the surface of cavities defined in equation (13). 

In addition to the g,-functions, the overall thermal 
resistance depends also on the shape of the cavity 
which is reflected by the unit normal vectors n: and 

the differential surface area dSc of the specific cavity 
surface under consideration, In the sequel we shall 
illustrate the use of equations (8)-( 14) by calculating 
the overall thermal conductivity of a solid containing 

spherical cavities subjected to various modes of heat 
transfer across the surface. 

The incoming heat flux & in a three-dimensional 
solid is assumed to be disturbed by spherical cavities 
with an average radius a as shown in Fig. 2. The 

unit normals at the surface of the spherical cavity are 

expressed by 

’ x; 

I /” r ! 

L Case (a): T, r = 0 

Case (b): kT, r = hT 

Case (c): kT, r = kfTf, r 

FIG. 2. A spherical cavity subjected to a uni-directional heat 
flux in the x;-direction. 



I842 D. Y. Tzou 

n: = .x::c/, with i = I 7 3 .-._ (15) Florence and Goodier [21]. Referring to equation 

where prime coordinates .Y: are related to the spherical 
(l3), the y,-functions arc thus 

coordinates (r. 0. @) by 9, = ,qJ = 0. $/l(“.o,@) = R(r,+U’:2r’) cos 0. 

;.\-‘,._\-;. .s;; and ,y:’ = </(/1(~. 0. @) = (&r&2) cos 0. (24) 

= (V sin 0 cos CD. I’ sin 0 sin CD. r cos 0) (16) Substituting equations ( 15). (16). and (24) into qua- 

and the differential surface dS’ is 0’ sin 0 d@ da. 
tion (14) and integrating the cavity surface for 

Also, we assume the heat flux (7; is in the same sense 
@E[O,~L] and OE [O. 2n]. the components of I/;, can 

as the unit normal e; but in the opposite direction. 
bc integrated immediately to gicc 

The intact thermal resistance tensor of the medium is Hi, = 7mii? and H:, othcrwisc. (25) 
assumed to be isotropic The tensor ff;, thus obtained is then transformed back 

R,, = Rh,,. Ihr i. ; = I. 2.3 (17) to the physical coordinates V, according to equation 

with (S,, being the Kroneckcr delta function and R the 
( I?). The result is 

isotropic thermal r&stance of the solid, the reciprocal 
of the isotropic thermal conductivity I ,‘X. 

For a spherical cavity with O-symmetry. the har- 
monic function resulting from the steady-state energy 

equation is 

7-= (AV+B:‘,,Y) cos 0 (18) 

with il and B being coefficients depending on the 
boundary conditions at the cavity surface. At a dis- 

tance far away from the cavity. the heat flux resulting 
from equation (IX) must be identical to the incoming 
heat tlux 4;. which gives 

r/‘% = /i(iT,‘i.\-;) as r + %. (19) 

By noticing that _\-, = I’ cos 0 according to the coor- 

dinate system defined in Fig. 2, equations (IX) and 

( 19) yield 

A = tj’,.k = ij’;R. (20) 

The coefticient B depends on the boundary condition 
at the surface of the cavity which reflects a specific 

mode of heat transfer across the interface. In this 
work. we shall consider three examples : (a) spherical 

cavities with insulated boundaries. (b) spherical cavi- 
ties with convective heat transfer across the surface. 
and (c) spherical cavities with conductive heat transfer 
across the surface. Case (b) is to illustrate the effect 
of heat transfer cocficicnt on the overall thermal con- 
ductivity while Case (c) is to study the effect of relative 

thermal conductivity. 

(a) Im~dtrtecl sp/wricd c~cwirirs. The insulated 

boundary condition at the surface of the cavity in this 

case is expressed bq 

T, = 0 at I‘ = (1. (21) 

Substituting equation (20) into equation (IX) and the 
result into equation (21), the coefficient B is deter- 
mined as 

B = 4; Rrr”? (72) 

and the temperature distribution is detcrmincd as 

T(v,O) = ((I;R)(r+d%‘) cos 0. (23) 

Equation (23) is exactly the same as that used by 

H,, = 
2rl - ,_ 
j Rfh,,. Tori.;= 1.2.3 (26) 

where the total number of cavities in a material vol- 

ume with the characteristic dimension (1. No’. COT- 

responds to the volume fraction f’ of cavities [ 16, 201 
in the solid. The overall thermal resistance t?. finally. 

is determined by substituting equation (26) into cqua- 
tion (8). which gives 

R: I? = I+ = I -(2x/3),/ (27) 

with R being the principal components of I?,, = Rb,, 
as a result of equation (I 7). This is the desired equa- 
tion for the overall thermal conductivity of a solid 

medium containing insulated spherical cavities. It 
turns out to be an isotropic tensor under the present 
condition with randomly oriented spherical cavities 
and a uni-directional incoming heat flux. The isotropy 
of the overall thermal conductivity tensor results from 
zero values of the y, and ~1~ functions in equation 

(24), which consequently reduces an H:, tensor with 

H’, 1 being the only non-zero component as shown by 
equation (25). For cavities with an anisomctric shape 
such as a penny-shaped crack subjected to multi-direc- 
tional heat flux impingement as illustrated in Fig. I (a). 
this may not bc the cast md an anisotropic overall 

thermal conductivity tensor would result. 
(b) Sphrr~ic~rl mYties n.itlr itltofircirrl wtzrwtiot~. 

The second case under consideration involves heat 
balance bctwccn the solid medium and the fluid phase 
trapped in the cavity across the cavity surface. Math- 
ematically. this condition can be expressed by 

/CT, = IIT at I’ = (I (18) 

where /I is the averaged heat transfer coetFicicnt and 
the tempcraturc of the fluid inside the cavity is 
assumed to bc zero without loss in generality. With 
the result of the cocfficicnt A shown in equation (20), 
combination of equation (IX) with equation (2X) 
yields 

B = q;Ru’( I -/~nR),(2+/~rrR) (79) 

and the tempcraturc distribution 

T(r. 0) = (tj;R)[r+u’( I --lzc~R)~(2+haR)rL] cos 0 

(30) 
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is obtained. The rest of the procedure is exactly the 

same as that in the previous case and the cor- 
responding equations are summarized as follows : 

7% ~,~f~n~i~~~l.~ 

g, = 92 = 0, gl(“‘,O,@,) = R(r+u’/2r’) cos 0, 

and ,q’: = CJ~(U, 0, a) = [3aR/(2 +huR)] cos 0. 

(31) 

H = _t!!sf_ j 
‘i 3(2+/7Ru) ( “’ (33) 

Substituting equation (33) into equation (8) then 
yields the following equation for the determination of 
the overall thermal resistance I?: 

(3ha)I?‘+(6-3huR-4~,f‘)li-6R = 0. (34) 

Again, the overall thermal resistance tensor is iso- 
tropic in this case. in contrast to equation (27) in Case 

(a), equation (34) is a quadratic equation to be solved 
for 8. By introducing the Biot number defined as 

Bi = /u/k = /MR. its solution can be arranged in the 

form of 

& R 6Bi 
--- = _ = 
k R (3Bii4nj’-6)+j((Bi+itn,f-h)‘+728i) 

(35) 

where the negative root is dropped because the ther- 

mal conductivity is positive definite. In the present 
case with convection heat transfer across the surface 
ofcavities, equation (3.5) shows that the overall degra- 
dation of the thermal conductivity is characterized by 
the Biot number. With the numerical values provided 

in Table I, Fig. 3 graphically displays the variation of 
the ratio of k;‘k vs the volume fraction ,/1 When the 
Biot number is small, say 2 x 10 ‘, the Buid inside the 
cavity only carries a small amount of energy and the 
cavity behaves like being insulated. The result of k;‘k 
represented by equation (35) in this cast reduces to 

Table I. Numerical values of F/k varying as a function of 
the volume fraction .I: Case (h) with heat convection across 

the cavity surface 

Volume fraction 

/’ 

Overall thermal conductivity 

0 1 I 1 
0.1 0.79 0.81 0.90 
0.2 0.58 0.64 0.8 1 
0.3 0.37 0.48 0.73 
0.4 0.16 0.39 0.67 

$ The case corresponding to b/k = I - (2n:3),f’ for insu- 
latcd cavities. 

ii/k 

Solid 

Cavity 

6) 

‘a/* 

kT, r = hT 

r’ 

I s -- Experiment 

I- 
O 0.1 0.2 0.3 0.4 

f 

FIG. 3. The effect of Biot number on the degradation of 
overall thermal conductivity, equation (35). Experimental 

results are from Agapiou and DeVries @I. 

equation (27) for insulated cavities, as represented by 

the straight line L/k = I - (2n/3),f. When Biot number 

increases. as expected, the relative strength of heat 
convection increases and the overall thermal con- 

ductivity increases consequently. The relationship 

between L/(;iii and ,/’ becomes more nonlinear especially 
in the range with larger values of J By comparing this 
example with the previous case with insulated cavities, 

we thus conclude that the heat convection across the 
cavity surface is a non-linear effect to the overall ther- 
mal condLIctivity. The experimental results recently 

obtained by Agapiou and DeVries [8] are also dis- 
played for comparison. The reported values of i/k 
in their work are up to 40% of the porosity. The 

model employing insulated cavities is sufficient within 
the range of f’ being approximately 15%. For the 
solid with larger values of volume fraction than this 
threshold, the convection mode of heat transfer across 

the cavity surface becomes important as reflected by 
the curve with Bi = 0.2 in the figure which agrees well 
with the experimental results in the full range of the 

volume fraction f: The Biot number, as shown by 
equation (35). appears as a parameter which has been 
given arbitrary values in comparison with the exper- 
imental results of $k vs ,fI On a numerical basis. the 

purpose is to determine the threshold value of Bi such 

that the predictability of the model could be extended 
to the range with higher values of porosity. In direct 
experimental measurements, however. the effects of 
other modes of internal heat transfer such as heat 
conduction and radiation across the cavity surfaces 
may also be included as an entirety. For direct com- 
parisons, therefore, the parameters involved in this 
model such as the values of h, k, and u (and hence the 
value of the Biot number) must be determined first 
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and then substituted into equation (35) for deter- 
mining the overall thermal conductivity. This is also 
the situation in the next section where the effect of 
thermal conductivity of fluids trapped in cavities is 

studied. 
(c) Spheriul carities subject to cmductiw heat 

e.uc~hnngr. The third case under consideration involves 
conductive energy balance across the cavity surface. 

The stationary fluid inside cavities is simulated as a 

thermal field which exchanges the energy with the 
solid medium by heat conduction. The energy equa- 

tions for the solid medium and the fluid phase inside 
cavities arc both Laplacian and the harmonic func- 

tions for temperature distributions are 

T = (q’TRr+Bir’) cos 0. for the 

solid medium with r > N (36) 

Tj = CY cos 0, for the fluid phase 

inside the cavity with r < N (37) 

where the boundary condition at infinity, equation 
(19), has been used in equation (36) and the term 

containing I/r’ in equation (37) has been dropped 
because the fluid temperature must keep bounded at 

r = 0. The coefficients B and C in equations (36) and 
(37) are determined from the continuity of tem- 
perature and heat flux across the surface of the cavity 

T= T, and (l/R)T, = (IIR,)T,,, at r = II. 

(38) 

From equations (36) and (37). then, equation (38) 

renders 

B = q;R[a’(R, -R)/(R+2&)] and 

C = cj;R[3Rf/(R+2R,-)] (39) 

and the temperature field in the solid medium and 

fluid phase are completely determined. The corres- 
ponding equations for calculating the overall ther- 

mal conductivity in this case are : 

The g,+mtions 

g’: = ,qq = 0 andyy = [3aRR,/(R+2Rf)] cos 0. 

(40) 

The H:, tensor in the prime coordinute system x: 

H’?, = 4mi~Rr/(~+2RI-) and H:, = 0 otherwise. 

(41) 

The H,, tensor in the global coordinate system Y, 

- 
H,, = ?,‘!?!L b,,, 

3(R+2R,-) 
(42) 

Substituting equation (42) into equation (8) then 
yields a quadratic equation for determining the overall 
thermal resistance l? 

~/?‘+(~R,--~R-~z,~R,.)R-~RR, = 0 (43) 

Solid 

yz& 

0.8 

t/k 0.6 

0.4 
t 

. Experiment 

I I I 

0 0.1 0.2 0.3 0.4 
f 

FIG. 4. The effect of relative thermal conductivity k/k, on the 
overall thermal conductivity, equation (44). Experimental 

results are from Agapiou and DeVries [8]. 

which can be solved for the ratio of the overall thermal 

conductivity to its intact value 

& R 
i. = R 

6 

- (3+4nf’R,-6R,)+&3+4n,fR,-6R,<)‘+72R,<)’ 

with R, = R,/R = k/k,-. (44) 

Note the similarity between equations (35) and (44). 
The relationship between L/k and ,f’is again nonlinear 
under the conductive mode of heat transfer across the 

cavity surface, as shown by Fig. 4. When the value 01 
k, is small relative to the intact value of the solid, say 
k/kf N 250, the cavity behaves like it is insulated and 

the result represented by equation (54) reduces to that 
of equation (27) for insulated cavities. As the value 
of RR(k/k,) decreases, equivalently the value of k, 

increases and the overall thermal conductivity of the 
solid increases. Note also that the curve with 
k/kc = RR = 4, as provided in Table 2, gives the values 

Table 2. Numerical values of R/k varying as a function ot 
the volume fraction ,/I Case (c) with heat conduction with 

the fluid inside cavities 

Overall thermal conductivity 
Volume fraction I;,‘/i 

f K, = 2 RR = 4t R, = 250:; 

0 I I I 
0. I 0.84 0.82 0.79 
0.2 0.69 0.65 0.58 
0.3 0.56 0.50 0.3X 
0.4 0.46 0.37 0.17 

t The case close to Case (b) with Bi = 0.2. 
$ The case corresponding to G/k = I -(2x/3) / for insu- 

lated cavities. 
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of 6/k very close to those in the previous Case (b) 
with Bi = 0.2. The models simulating heat conduction 

and convection across the cavity surface are thus inter- 

related. 

CONCLUSION 

The effect of interfacial convection and conduction 
across the cavity surface on the overall thermal con- 
ductivity of porous media has been investigated in this 
work. The Biot number has been found to be the 

physical modulus characterizing the effect of heat con- 
vection, while the ratio of thermal conductivity of the 
solid medium to that of the fluid phase inside cavities, 

k/k,, has been found to characterize the effect of heat 
conduction. In both cases, the analytical results 
obtained in this work agree well with the experimental 
data for Bi = 0.2 in the convection model and k/k, = 4 

in the conduction model. In comparison with the 
results employing insulated cavities [ 161, con- 
sideration of internal heat transfer across cavity sur- 

faces significantly extends the applicable range of the 
model to solid media with porosity being at least 40%. 

The analytical model proposed in this work is gen- 

eral enough to study cavities of any shape. With tem- 
perature around a single cavity being the central quan- 
tity in this model, however, numerical methods such 
as the finite difference or the finite element method may 
be needed for cavities with an irregular geometry. In 
this case, the surface integral of temperature, and 

hence the components of the H:, tensor in equation 
(9), must be evaluated numerically due to the absence 
of an analytical form for the temperature distribution 
T along the cavity surface. At this stage of the devel- 

opment, there exists two major restrictions in the 
model being proposed. First, the volume fraction or 
porosity of cavities in the solid cannot be too high 
because interactions with adjacent cavities are not 

incorporated in determining the temperature dis- 
tributions represented by equations (23) (30), and 
(36). Should the coupling effects among cavities be 

included, the problem would involve two cavities sep- 
arated by a distance I in the mathematical formulation 
and the value of I will be the additional geometrical 
parameter involved in the temperature distribution 
along the cavity surface. In averaging the Euler angles 

4 and 0 to obtain the H,, tensor according to equation 
(12) then, the one averaging the distance 1 over the 

corresponding physical domain from I, (the smallest 
value of 1 between any adjacent cavities) to I, (the 
largest value of I between any adjacent cavities) should 
also be included and the overall thermal conductivity 

in this case will depend on the values of I, and 12. 
Because the problem formulated in this manner 
involves a multiply-connected region, numerical 
methods seem to be unavoidable in determining the 
temperature distribution. Secondly, because deter- 
mination of the components of the H:, tensor is made 
by comparing the coefficients of q; in equation (9), 
application of the present model is limited to linear 

problems for which the temperature T can be rep- 
resented by a linear function of the incoming heat flux. 
For non-linear problems such as the one involving a 

temperature-dependent thermal conductivity, the 
temperature distribution T around the cavity depends 
also on the higher order terms of $ and at this stage 
of the development, the model is not mature yet for 
such extensions. 

Whether the overall thermal resistance tensor is 

kept isotropic or not fully depends on the outcome of 
the added tensor H,,. In the present case with ran- 

domly oriented spherical cavities subjected to a uni- 
directional heat flux, the H,, tensor, and hence the E,, 

tensor, turns out to be isotropic. In the case that H,, 

becomes an anisotropic tensor, such as that resulting 
from the presence of a multi-directional incoming heat 
flux impinging on cavities with an anisometric shape, 

a total of nine components may appear altogether 
in the overall thermal resistance tensor R,,. Besides, 

equations (27) (35), and (44) are obtained based upon 
an isotropic medium. Should an originally anisotropic 

material be considered, the temperature distribution 
may involve all the components R,, of the thermal 

resistance tensor, and equation (8) may lead to a total 
of nine algebraic equations to be solved for all the 
components of R,,. 

The overall thermal conductivity is a combined 

result of thermal loading, geometrical configuration 

of cavities, and intact behavior of the solid medium. 
It reflects the thermal response of a porous medium 
to a specific way with which the medium is excited. 

The complicated interaction among the three factors 
of loading, geometry, and material may render an 
anisotropic tensor for the overall thermal conduc- 
tivity. The distribution of penny-shaped mesocracks 
in a preferential direction in a solid medium [ 161, for 

example, may render a smaller value of the thermal 
conductivity in the direction perpendicular to the 

crack surface in comparison with that in parallel due 
to the discontinuity across the crack surface. Along 
with the extensions of the model into the non-linear 
problems with or without coupling effects, this will be 

the major direction for the future development of the 
model. 
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EFFET SUR LA CONDUCTIVITE THERMIQUE APPARENTE DU TRANSFERT DE 
CHALEUR INTERNE DANS DES CAVITES 

RksumC-A I’aide d’un modZle analytique, on &udie la d&gradation de la conductivitt: thermique apparente 
en tenant compte du mtcanisme interne du transfcrt thermique entre le milieu solide et le fluidc dans les 
cavitts. Celles-ci sont supposees &re distribut-es au hasard dans le solide avec une densitk mesurke par la 
fraction volumique. Le modile cst capable de caracteriser l’effet du transfert de chalcur interne par 
conduction et convection ?I travers les surfaces des cavitts. Pour le mode convectif, le nombre de Biot cst 
identifik comme ttant le module dkterminant la conductivitt- tandis quc dans le mode conductif le facteur 
principal est le rapport de la conductivitC thermique du solide a celle du fluide dans les cavitis. L’cffet de 
la conduction interfaciale et de la convection est prononci- lorsque la fraction volumique des pores dans le 
solide dkpasse 15%. Le grand &art aux rtsultats exptrimentaux qudnd on considere les cavites comme 
isolkes est rattrap& en considCrant les bilans de conduction et convection ri travers les surfaces des cavitts. 

DER EINFLUSS DES INNEREN WARMEUBERGANGS IN tIOHLR;ilJMEN AUF DIE 
GESAMTWfRMELElTF;HlGKElT EINES PORiiSEN MEDIUMS 

Zusammenfassung -Auf dcr Grundlagc cincs analytischcn Modells wird in der \orliegcndcn Arbeit die 
Abnahme der Ge~amtwarmeleitflihigkcit aufgrund ties inncren W;irmciibergangs Twischcn dcm fcstcn 
Medium und dcm Fluid in eincm Hohlraum untcrsucht. Es wird angcnommcn. da0 dcr Hohlraum aul 
Luf~illige Weise im Fcststolf‘ Lcrtellt ist. Seine Dichte wird durch den Volumcnantcil charaktcrisicrt. Da\ 
Model1 ist in dcr Lagc. den Einflull des inncrcn WGrmciibcrgangs info& Lcllung und Konvcktion an det 
Hohlraumobcrfliichc LLI hcschrelben. In FGllcn. bcl dencn die Konvcktion cinc Rolle spielt. ist die Biot- 
Zahl die fiir die Gesamtwlirmeleitung charaktcristiachc KcnngriiBe. wiihrcnd im Fall tiberwicgcndcr 
Wlirmcleitung das Vcrhliltnis dcr Wiirmcleitfihigkcitcn van Fcststolt‘und Fluid im Hohlraum dlc \vcscnt- 
lichc Ein(luDgr(il~c ist. DCI- Eintlul\ con Warmeleitung und Konicktion iibcr die Grcnsiliichc crweist sich als 
bcdeutsam. sobald dcr Volumcnantcli der Poren im Fcstston‘ IS ‘!h iibcrschrcitct. Die groUc Abwcichung 
gegcniibcr Versuchs~crten ibird hchobcn. wcnn \tatt isolicrtrr Hohlr;iumc tine Wiirmebikmr auf?rund 

,011 Lcitung und Ko\cktion iiher die Hohlraumoberlliichc betrachtct wird 

BJIMIIHME BHYTPEHHEI-0 TEnJIOnEPEHOCA B IIOJIOCTRX HA K03@@M4MEHT 
CYMMAPHOZi TEIIJIOIIPOBOAHOCTW 

AimoTeqnn-Ha OCHOBc aHa,IHTll’teCKOii MOncJlH ACCJIeflyeTCn CHiiXEHRe K03+#WAeHTa CYMMaPHOfi 

TennonpoBoflHocTIi 38 cYeT ~~flpetiIfH~ MexaHH3MoB TennonepeHoca Memqy Tsepnofi cpenoii H mug- 

KOCTbIO B "OnOCTKx. ~peL,nOnaraeTCK, YTO IIOJIOCTA XSLOTHYeCKH paCI&YZAen'ZHbI B TBepAOM TeJIC,a Hx 

IU,OTHOCTb O"peJWWieTC5I 06LeMHOii LtOJIeti. Monenb MOXCeT XapaKTepH30BaTb BJlHSIHUe BH)'T,N?HHerO 

TWnOne~HOCa,B WCTHOCTA, TaKOrO KBK KOHBeKT&%BHLJi? H KOHA,'KTHBHbIti Te,TnOnepeHOCWpe3 nOBepX- 

HOCTB IIOnOCTeii. B CJlyWe KOHBeKTHBHOrO PeXtHMa 'IHCJIO 6HO SBJIleTCff BeJIHWHOfi, Oll~~enKEOIUC~ 

KO3++HIJ&b2HTCYMMaPHOti TenJLOnpOBOAHOCTH,B TO Bp'ZMR KBK IIpH KOHXYKTUBHOM Pe~HMe OCHOBHbIM 

OII~~e,U,IOIL,HM @KTOPOM IlBnReTCIl OTHOIUeHUe K03~~HUWeHTOB TeIUIOnPOBOJ,HOCTU TBepL,Ofi CpAbl 

H ~KWDKOCTH BHYTPH nonocTe8. HatineHo, ST0 *aeKT -rennonpoBonHoc-ru u KoHBeKmiA Ha Mexaa3Hoii 
rpaHuqe oco6eHHo 3aMeTeH, KOr&i o6MhfHan AOJIR IlOp B TBepnOii C&%ne "WBbIluaeT 15”%. C)'UIeCTBeH- 
HOeOTKnOHeHUeOT 3KCnepHMeHT~bHblX ~3ynbTaTOB,nOny9eHHOe "PH HCCJIenOBaHHH U30nUpOBaHHbIX 

nonocTe8, yCTpaHS‘eTC$I ~oC~~~~TBOM yreTa -rennoBoro 6anaHca KOHBeKUHU wnu TeIIJIOnpOBOJ,HOCTH 

'E~3nOBepXHOCTb nOJIOCTA. 


